1. [1] Hiroi, K., Inoue, T., Akashi, K., Yumura, T., Miyachi, T., Hironaka, H., Kanno, H. and Shinoda, Y.: ARIA: Interactive Damage Prediction Sysytem for Urban Flood Using Simulation and Emulation Federation Platform, Journal of Information Processing, Vol.10, No.2, pp.11-25 (2020).
2. [2] Hirokawa, Y., Nishikawa, N., Yamada, T., In-nami, J. and Asano, T.: An evaluation of flood evacuation using flood forecast based on computational fluid dynamic, Journal of Information Processing, Vol.60, No.10, pp.1672-1682 (2019).
3. [3] Moya, L., Mas, E. and Koshimura, S.: Learning from the 2018 Western Japan heavy rains to detect floods during the 2019 Hagibis typhoon, Remote Sensing, Vol.12, No.14, p.2244 (2020).
4. [4] Rahman, M., Chen, N., Elbeltagi, A., Islam, M.M., Alam, M., Pourghasemi, H.R., Tao, W., Zhang, J., Shufeng, T., Faiz, H., et al.: Application of stacking hybrid machine learning algorithms in delineating multi-type flooding in Bangladesh, Journal of Environmental Management, Vol.295, p.113086 (2021).
5. [5] Ke, Q., Tian, X., Bricker, J., Tian, Z., Guan, G., Cai, H., Huang, X., Yang, H. and Liu, J.: Urban pluvial flooding prediction by machine learning approaches-a case study of Shenzhen city, China, Advances in Water Resources, Vol.145, p.103719 (2020).