Antimony recovery from recycled terminals of lead-acid batteries with Na2CO3 and SiC after firstly SsB2O3 formation

Author:

Jiménez-Lugos J.C.1,Sánchez-Alvarado R.G.1,Cruz-Ramírez A.1,Romero-Serrano J.A.1,Hernández-Ramírez A.1,Rivera-Salinas J.E.2

Affiliation:

1. Instituto Politécnico Nacional - ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, Ciudad de México, México

2. Centro de Investigación en Química Aplicada - CIQA, Department of Plastics Transformation Processing, Saltillo, Coahuila, México

Abstract

Terminals obtained from spent lead-acid batteries in Mexico contain around 2 wt% Sb. The terminals were melted in an electric furnace and then oxygen was injected at 750 ?C with a gas flow rate of 2 L/min to produce high purity Sb2O3. The antimony trioxide obtained was treated with a mixture of Na2CO3-SiC at 1000 ?C to obtain metallic antimony. The antimony trioxide was reduced by C present in reagents while silicon and sodium formed a slag phase. The amounts of Sb2O3 and SiC were held constant while the Na2CO3 was evaluated in the range from 30 to 42 wt%. The produced antimony and slag were characterized by the X-ray diffraction and SEM-EDS techniques. The addition of 34 wt% Na2CO3 led to the recovery of antimony up to 90.16 wt% (99.57 wt% purity) and the lowest antimony losses in the slag (2 wt%). In addition, the compounds Na2SiO3 and Na2Si2O5 formed in the slag indicated a more stable slag. Na2CO3 contents higher than 38 wt% decreased the antimony recovery since Na2Sb4O7 compound was promoted in the slag. The oxidation and reduction process was modeled in FactSage 7.3 software for a better understanding of the Na2CO3 and SiC additions on the antimony recovery rates and compounds formed in the slag.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3