Second law analysis of heat transfer in swirling flow of Bingham fluid by a rotating disk subjected to suction effect

Author:

Mustafa Meraj1,Tabassum Maria1,Rahi Mahmood2

Affiliation:

1. School of Natural Sciences, National University of Sciences and Technology, Islamabad, Pakistan

2. Higher Colleges of Technology, Abu Dhabi, United Arab Emirates

Abstract

This framework presents heat transfer analysis for swirling flow of viscoplastic fluid bounded by a permeable rotating disk. Problem formulation is made through constitutive relations of Bingham fluid model. Viscous dissipation effects are pre-served in the mathematical model. Entropy production analysis is made which is yet to be explored for the von-Karman flow of non-Newtonian fluids. Having found the similarity equations, these have been dealt numerically for broad parameter values. The solutions are remarkably influenced by wall suction parameter and Bingham number which measures the fluid yield stress. Akin to earlier numerical results, thermal boundary-layer suppresses upon increasing wall suction velocity. Thermal penetration depth is much enhanced when fluid yield stress becomes large. Higher heat transfer rate can be accomplished by employing higher suction velocity at the disk. However, deterioration in heat transfer is anticipated as fluid yield stress enlarges. Current numerical results are in perfect line with those of an existing article in limiting sense.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3