Field test research on gas migration law of mining coal and rock

Author:

Peng Gao-You1,Gao Ming-Zhong2,Xie Jing1,Liu Qiang1,Deng Guang-Di1,Li Cong1,He Zhi-Qiang1

Affiliation:

1. MOE Key Laboratory of Deep Underground Science and Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Hydraulic and Hydroelectric Engineering, Sichuan University, Chengdu, China

2. MOE Key Laboratory of Deep Underground Science and Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Hydraulic and Hydroelectric Engineering, Sichuan University, Chengdu, China + Institute of Deep Earth Science and

Abstract

The fractures in coal and rock mass are the main channels of gas seepage, and understanding the gas migration law during mining is the precondition of gas control. The long-term in-situ monitoring of the abutment pressure, fracture networks and gas-flow in front of a mining face was carried out and the 1-D connectivity ratio of boreholes were calculated. The results showed that under the influence of mining, the fracture networks developed to the depth of rock stratum, and as far-field gas seepage channels, far-field gas continuously supplied the near-field gas. The gas flow in front of the mining face have undergone two stages of evolution from initial value to peak value, and then to a stable value. The 1-D connectivity ratio the abutment pressure about 5 to 10 m. The 1-D connectivity ratio reflected the dergree of coal and rock fracture penetration caused by mining, and the area with the highest gas extraction efficiency was the transition zone from peak abutment pressure to residual pressure in coal seams.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3