Laminar air flow free convective heat transfer inside a vertical circular pipe with different inlet configurations

Author:

Mohammed Hussein1,Salman Yasin2

Affiliation:

1. University Tenaga Nasional, College of Engineering, Mechanical Engineering Depatrment Km, Jalan Kajang - Puchong, Selangor, Malaysia

2. Baghdad University, College of Engineering, Nuclear Engineering Department Baghdad - Al-Jaderyia, Iraq

Abstract

Free convection heat transfer has been experimentally investigated for laminar air flow in a vertical circular pipe by using the boundary condition of constant wall heat flux in the ranges of local Rayleight number (RaL) from 1.1?109 to 4.7?109. The experimental setup was designed for determining the effect of different configurations placed at the inlet of a vertical heated pipe, on the surface temperature, the local and average heat transfer coefficients. The apparatus was made with an electrically heated aluminum pipe with length of 900 mm and inside diameter 30 mm. The inlet configurations included two circular pipes having the same diameter as the heated pipe but with lengths of 600 and 1200 mm, sharp-edge and bell-mouth. It was found that the surface temperature along the pipe surface for same heat flux would be higher values for inlet condition with length of 1200 mm and would be lower values for bell-mouth inlet condition. The results show that the local Nusselt number Nux and average Nusselt number (NuL) values would be higher for bell-mouth inlet condition and lower values for 1200 mm inlet condition. For all inlet configurations, the results reveal that the Nu increases as the heat flux increases. Empirical correlations have been proposed in a form of log NuL vs. log RaL for each case investigated and a general correlation for all cases has been obtained which reveals the effect of inlet conditions existence on the free convection heat transfer process in a vertical circular pipe. .

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3