Generalized cosecant numbers and trigonometric inverse power sums

Author:

da Fonseca1,Glasser Lawrence2,Kowalenko Victor3

Affiliation:

1. University of Primorska FAMNIT, Koper, Slovenia

2. Department of Physics, Clarkson University Potsdam, NY, USA

3. The University of Melbourne, Department of Mathematics and Statistics, Victoria, Australia

Abstract

The generalized cosecant numbers denoted here by c?,k represent the coefficients of the power series expansion or generating function of the fundamental function x?= sin?x. In actual fact, these interesting numbers are polynomials in ? of degree k, whose coefficients are only dependent upon k. In this paper we show how they emerge in the calculation of trigonometric inverse power sums. After introducing the generalized cosecant numbers we present a novel and elegant integral approach for computing the Gardner-Fisher trigonometric inverse power sum, which is given by Sv,2(m) = (?/2m)2v ?m-1,k=1 cos-2v (k?/2m), where m and v are positive integers. This method not only confirms the solutions obtained earlier by an empirical method, but it is also much more expedient from a computational point of view. By comparing the formulas from both methods, we derive several new and interesting number-theoretical results involving symmetric polynomials over the set of quadratic powers up to (v-1)2 and the generalized cosecant numbers.

Publisher

National Library of Serbia

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The resolvent kernel on the discrete circle and twisted cosecant sums;Journal of Mathematical Analysis and Applications;2024-10

2. Algorithms for Various Trigonometric Power Sums;Algorithms;2024-08-22

3. The collective dynamics of a stochastic Port-Hamiltonian self-driven agent model in one dimension;ESAIM: Mathematical Modelling and Numerical Analysis;2024-03

4. Exact evaluations and reciprocity theorems for finite trigonometric sums;Research in the Mathematical Sciences;2023-09-25

5. Further developments of basic trigonometric power sums;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3