Sorption of diclofenac to selectively oxidised cellulose

Author:

Sailovic Pero1,Rodic-Grabovac Branka1,Uletilovic Snezana2

Affiliation:

1. University of Banja Luka, Faculty of Technology, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

2. University of Banja Luka, Faculty of Medicine, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Abstract

Biologically active fibers as drug carriers have improved characteristics in comparison with conventional medical therapies. Cellulose as a hydrophilic and biocompatible, nontoxic and eco-friendly material, makes a good polymer matrix for obtaining biologically active fibers. Loading drugs on the fiber carrier is accomplished through hydrophobic interactions, which is a prevailing mechanism of drug bonding. These interactions can be achieved by hydrophobic parts of the drug and the fiber carrier or by hydrophobic drugs themselves bonded on the fiber. In this paper, oxidized cellulose (OC) with 0.547, 1.163 and 2.199 mmol/g COOH is produced by using selective oxidation of a cellulose-based bandage. Oxidation has been carried out in mixture of HNO3/H3PO4 2:1 and 1.43 % NaNO2 for 5, 10 and 20 h at 25 ? 1 ?C. The OC sample with 2.199 mmol/g COOH showed the lowest sorption capacity as well as weak mechanical properties, so that the sorption experiments were not further pursued. The other two samples of oxidized cellulose with 0.547 and 1.163 mmol/g COOH have been used for chemical bonding of an analgesic, diclofenac, a derivative of potassium salt. Diclofenac in its structure contains two benzene rings which are linked via a secondary amine. The analgesic also contains a carboxyl group, as well as 2 chlorine atoms. As a result of the presence of these functional groups and structures, diclofenac can build multiple chemical bonds with an oxidized cellulose bandage. The chemical bonding of the drug has been performed using three analgesic solutions with concentrations of c = 2.5?10-3, 3.4?10-3 and 5.1?10-3 mol/L, at the temperature of 26 ? 1oC while desorption was performed in physiological saline solution. The amounts of bonded and released antibiotic were determined by UV-VIS spectroscopy at the wavelength of ?max=276 nm. The maximum amount of bonded drug (0.814 mmol/g OC) has been obtained by sorption from the solution of concentration c=5.1?10-3, while the highest amount of desorbed diclofenac was 0.063 mmol/g OC. The sorption kinetics has been succesfully described by the pseudo-second order model. It was established that the drug bonding was achieved by hydrogen bonds of the drug functional groups with the oxidised cellulose bandage. Low diclofenac relase from the oxsidiesed cellulose (12.5 % in 24 h) is a consequence of formation of multiple bond as well as drug aggregates on fiber surfaces.

Publisher

National Library of Serbia

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3