Optimization of bioethanol production from soybean molasses using different strains of Saccharomyces cerevisiae

Author:

Roncevic Zorana1ORCID,Bajic Bojana1ORCID,Dodic Sinisa1ORCID,Grahovac Jovana1ORCID,Pajovic-Scepanovic Radmila2,Dodic Jelena1ORCID

Affiliation:

1. Faculty of Technology, Novi Sad

2. University of Montenegro, Biotechnical Faculty, Montenegro

Abstract

Bioethanol technology represents an important scientific research area because of the high market value and wide availability of its primary and by-products. Worldwide interest in utilizing bioethanol as a renewable and sustainable energy source has significantly increased in the last few years due to limited reserves of fossil fuels and concerns about climate change. Therefore, improvement of the bioethanol production process is a priority research field at the international scale, due to both economic and environmental reasons. The aim of this study was to optimize production of bioethanol from soybean molasses based media using response surface methodology. Three different strains of the yeast Saccharomices cerevisiae, commercially available in dried form, were used as production microorganisms, and the best results were obtained by using dried baker?s yeast. The results of optimization of alcoholic fermentation using dried baker?s yeast indicate that the highest value of the overall desirability function (0.945) is obtained when the initial sugar content is 18.10 % (w/v) at the fermentation time of 48.00 h. At these conditions the model predicts that bioethanol concentration is 8.40 % (v/v), yeast cell number 2.21?108 cells/mL and the residual sugar content is 0.35 % (w/v).

Publisher

National Library of Serbia

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3