Electrochemical performance of sol-gel derived La0.6S0.4CoO3-δ cathode material for proton-conducting fuel cell: A comparison between simple and advanced cell fabrication techniques

Author:

Abdul Samat1,Yusoff Wan1,Baharuddin Nurul1,Somalu Mahendra1,Muchtar Andanastuti2,Osman Nafisah3

Affiliation:

1. Universiti Kebangsaan Malaysia, Fuel Cell Institute, UKM Bangi, Selangor, Malaysia

2. Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia + Universiti Kebangsaan Malaysia, Faculty of Engineering and Built Environment, Centre for Materials Engineering and Smart Manufacturing (MERCU), UKM Bangi, Selangor, Malay

3. Universiti Teknologi MARA, Faculty of Applied Sciences, Arau, Perlis, Malaysia

Abstract

In this study, the effects of different fabrication techniques on the electrochemical performance of solgel derived La0.6Sr0.4CoO3-? (LSC) cathode material for intermediate temperature proton-conducting fuel cells were investigated. Single-phase, sub-micron LSC powder was used to prepare cathode slurries by a simple grinding-stirring (G-S) technique and an advanced ball milling-triple roll milling (BM-TRM) technique. The prepared G-S and BM-TRM cathode slurries were brush painted and screen printed, respectively, onto separate BaCe0.54Zr0.36Y0.1O2.95 (BCZY) proton-conducting electrolytes to fabricate symmetrical cells of LSC|BCZY|LSC. The thickness of LSC cathode layer prepared by brush painting and screen printing was 17 ? 0.5 ?m and 7 ? 0.5 ?m, and the surface porosity of the layers was 32% and 27%, respectively. Electrochemical impedance spectroscopy analysis revealed that the layer deposited by screen printing had lower area specific resistance measured at 700?C (0.25Wcm2) than the layer prepared by brush painting of G-S slurry (1.50Wcm2). The enhanced LSC cathode performance of the cell fabricated using BM-TRM assisted with screen printing is attributed to the improved particle homogeneity and network in the prepared slurry and the enhanced particle connectivity in the screen printed film.

Publisher

National Library of Serbia

Subject

Ceramics and Composites

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3