Embedded control system for reactive power control in distributed energy resources for voltage regulation in the distributed power system

Author:

Arumugam Vasanth1,Kumar Ashok1

Affiliation:

1. Electrical Engineering Department, Annamalai University, Tamilnadu, India

Abstract

Since more distributed energy resources (DER) are being linked to the electrical grid, the current distributed power system (DPS) is encountering additional voltage regulation challenges. Traditionally, on-load tap changers, step voltage regulators, and switched capacitor banks have been used for voltage regulation in DPS. However, these sources are insufficient for voltage regulation in current DPS. As a result, reactive power assistance from a DER unit based on power electronics is intended to adjust the voltage in the DPS. In terms of flexibility, security, reliability, and availability, embedded control systems are now being investigated by researchers for use in power converter-fed DER units. This paper presents a method for constructing an embedded controller unit based on XynergyXS for the power converter controller, which includes reactive power regulation in the DER unit. Furthermore, it proposes dynamic reactive power control in the DER unit for enhanced DPS voltage regulation. The suggested voltage control approach is tested in a MATLAB/Simulink model of a practical 85-bus distributed power system located in the northern Tamilnadu region, India as well as a modified IEEE 33-bus system. The new control approach investigates all potential power grid disruptions. The results reveal that the proposed reactive power control method in DER units enhances network voltage regulation while reducing the number of switching operations performed by static voltage regulating units such as on load tap changers and switched capacitor banks.

Publisher

National Library of Serbia

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3