Influence of ambience temperature and operational-constructive parameters on landfill gas generation: Case study Novi Sad

Author:

Vujic Goran1,Jovicic Nebojsa2,Petrovic-Djurovic Maja3,Ubavin Dejan1,Nakomcic Branka1,Jovicic Gordana2,Gordic Dusan2ORCID

Affiliation:

1. Faculty of Technical Science, Novi Sad

2. Faculty of Mechanical Engineering, Kragujevac

3. Ministry of Science and Technological Development of the Republic of Serbia, Belgrade

Abstract

Researches in the area of landfill gas generation and energy utilization are currently underway and widespread in the world for several reasons: reducing effects of greenhouse gases, possibilities for utilizing alternative energy sources, reducing conventional energy resources exploitation, and environmental protection. First part of this research is conducted with an aim to establish the influence of meteorological parameters, primarily ambience temperature, on the methane generation processes at Novi Sad landfill. The second part of the research refers to functional characteristics of landfill such as the waste age, closing practice, and the age of certain parts of landfill body, as well as the waste depth and quantity of generated methane. Based on several years of investigation, it is concluded that methane generation varies in the range of 0-34 vol.% m3/m3, and that seasonal variations have significant influence on methane generation. At low temperatures, during winter, methane generation and migration is stagnant while in summer periods, due to higher temperatures, the process of methane generation is more intensive.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3