3D-QSAR study of adenosine 5’-phosphosulfate (APS) analouges as ligands for APS reductase

Author:

Eric Slavica1,Cvijetic Ilija2ORCID,Zloh Mire3

Affiliation:

1. University of Belgrade, Faculty of Pharmacy, Belgrade, Serbia

2. University of Belgrade, Innovation Center of the Faculty of Chemistry, Belgrade, Serbia

3. Nanopuzzle Medicines Design, Stevenage, United Kingdom + Faculty of Pharmacy, University Business Academy, Novi Sad, Serbia

Abstract

Metabolism of sulfur (sulfur assimilation pathway, SAP) is one of the key pathways for the pathogenesis and survival of persistant bacteria, such as Mycobacterium tuberculosis (Mtb), in the latent period. Adenosine 5'-phosphosulfate reductase (APSR) is an important enzyme involved in the SAP, absent from the human body, so it might represent a valid target for development of new antituberculosis drugs. This work aimed to develop 3D-QSAR model based on the crystal structure of APSR from Pseudomonas aeruginosa, which shows high degree of homology with APSR from Mtb, in complex with its substrate, adenosine 5'-phosphosulfate (APS). 3D-QSAR model was built from a set of 16 nucleotide analogues of APS using alignment-independent descriptors derived from molecular interaction fields (MIF). The model improves the understanding of the key characteristics of molecules necessary for the interaction with target, and enables the rational design of novel small molecule inhibitors of Mtb APSR.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3