Separation of tungsten and rhenium on alumina

Author:

Vucina Jurij1,Lukic Dagoljub1,Stoiljkovic Milovan2ORCID

Affiliation:

1. Laboratory for Radioisotopes, Belgrade, Serbia and Montenegro

2. Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro

Abstract

The conditions for the efficient separation of tungsten(VI) and rhenium (VII) on alumina were established. The distribution coefficients K d for tungstate and perrhenate anions, as well as the separation factors ?(? = KdWO42-/Kd ReO4-) were determined using hydrochloric or nitric acid as the aqueous media. Asolution of sodium chloride in the pH range 2?6 was also examined. Under all the tested experimental conditions, alumina is a much better adsorbent for tungsten than for rhenium. The obtained results indicated that the best separation of these two elements is achieved when 0.01? 0.1 mol dm-3HCl or 1.0mol dm-3 HNO3 are used as the aqueous media. If NaCl is used as the aqueous phase, the best separation is achieved with 0.20 mol dm-3 NaCl pH 4?6. Under these experimental conditions, the breakthrough and saturation capacities of alumina for tungsten at pH4 are 17 and 26 mg W/g Al2O3 respectively. With increasing pH, these values decrease. Thus, at pH 6 they are only 4 and 13 mg W/g Al2O3, respectively.

Publisher

National Library of Serbia

Subject

General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Separation of Clinical Grade 188Re from 188W Using Polymer Embedded Nanocrystalline Titania;Chromatographia;2009-03-22

2. Tungsten and Rhenium Sorption Study on Alumina to Prepare188W/188Re Generators;Separation Science and Technology;2009-03-19

3. Concentration of rhenium from dilute sodium chloride solutions;Journal of the Serbian Chemical Society;2008

4. Separation of tungsten and rhenium on alumina in dynamic conditions;Journal of Radioanalytical and Nuclear Chemistry;2007-07-30

5. Sorption of rhenium on alumina under dynamic conditions;Journal of the Serbian Chemical Society;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3