Influence of ZnO addition on microstructure and proton electrical conductivity of BaZr0.8Y0.2O3-δ ceramics

Author:

Wendler Leonardo1,Ramos Kethlinn1,Souza Dulcina1

Affiliation:

1. Graduate Program in Materials Science and Engineering, Department of Materials Engineering, UFSCar, Federal University of São Carlos, São Carlos SP, Brazil

Abstract

Sintering aids are widely used to promote densification and grain growth for electrolytes based on yttriumdoped barium zirconate. However, there are some discrepancies in the literature about the influence of these sintering aids on the microstructure development. Some authors consider that ZnO remains on grain boundaries, forming an amorphous phase that promotes sintering, and others proposed that ZnO forms a solid solution with barium zirconate. Even considering different mechanisms, it was proposed that ZnO addition compromised protonic conductivity. In this work BaZr0.8Y0.2O3-? (BZY20) was prepared by conventional oxide mixture (solid state sintering), adding ZnO as sintering aid. We proposed a mechanism for the ZnO actuation on the microstructure development, by the formation of a liquid phase during sintering and formation of a vitreous phase throughout grain boundaries during cooling. This could be the reason for poor protonic conductivity in comparison to the undoped BZY20 electrolytes. The proposed mechanism was established through the scanning electron microscopy analyses and electrical conductivity measurements under several different atmospheres by impedance spectroscopy. High density samples were obtained by using ZnO, but with compromised electrical conductivity compared to the undoped samples.

Publisher

National Library of Serbia

Subject

Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3