Dissipation minimization of two-stage amplifier using deep learning

Author:

Lutovac-Banduka Maja1ORCID,Simovic Aleksandar2ORCID,Orlic Vladimir3ORCID,Stevanovic Ana4

Affiliation:

1. Computer Based Systems RT-RK, Belgrade, Serbia

2. ITS - Information Technology School, Department of Information Technology, Belgrade, Serbia

3. Institute Vlatacom, Belgrade, Serbia

4. The Ministry of Interior of the Republic of Serbia, Police Department Niš, Department of Information and Communication Technologies, Niš, Serbia

Abstract

Designing electrical circuits and devices is usually based on expertise in electronics and the thorough use of numerical software tools. This procedure can be time-consuming, and the designer has only one solution. This paper introduces a new approach focused on new concept design and optimization of specific circuits using symbolic expressions. The primary amplifier circuit, realized by a deep learning module, changes the value to reduce power dissipation. The control signal of the deep learning module is output from an amplifier that depends on the statistics of the input signal value.

Publisher

National Library of Serbia

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Reference16 articles.

1. D. R. Patrick, S. W. Fardo: Electricity and Electronics Fundamentals, 2nd Edition, River Publishers, London, New York, 2008.

2. M. D. Lutovac, D. V. Tošić: SchematicSolver - Symbolic Signal Processing, Version 2.3, LMAAM, Belgrade, 2014.

3. M. Lutovac-Banduka, D. Milosevic, Y. Cen, A. Kar, V. Mladenovic: Graphical User Interface for Design, Analysis, Validation, and Reporting of Continuous-Time Systems Using Wolfram Language, Journal of Circuits, Systems, and Computers, Vol. 32, No. 14, April 2023, pp. 1-14.

4. M. Lutovac: The Design of Analog and Digital Filters using Computer Algebra Systems, Academic Mind, Belgrade, 2011. (in Serbian)

5. M. M. Lutovac, V. Pavlovic, M. D. Lutovac: Automated Knowledge Based Filter Synthesis Using Gegenbauer Approximation and Optimization of Pole-Q Factors, Elektronika Ir Elektrotechnika, Vol. 19, No. 9, October 2013, pp. 97-100.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiplierless Neural Networks for Deep Learning;2024 13th Mediterranean Conference on Embedded Computing (MECO);2024-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3