Stochastic simulation study of HPGe detector response and the effect of detector aging using Geant4

Author:

Tariq Hina1,Mirza Sikander1,Rehman Shakeel1,Mirza Nasir1

Affiliation:

1. Pakistan Institute of Engineering & Applied Sciences, Department of Physics & Applied Mathematics, Nilore, Islamabad, Pakistan

Abstract

In this study the effect of detector aging in terms of increased dead layer thickness on detector efficiency has been studied using the Geant4 toolkit. Variation of energy deposition in the detector dead layer with the dead layer thickness has been quantified for various values of incident g-ray energy considering point isotropic as well as extended sources including the circular disk source and cylindrical volume sources. For the point isotropic source, the Geant4 computed values of energy loss per particle in the dead layer are found in good agreement with the corresponding published results with maximum deviation remaining below 2 %. New results for dependence of geometric, full-energy peak and total efficiency on dead layer thickness have been studied using Geant4 simulations for various values of g-ray energy, and for point isotropic and extended sources at various axial and lateral positions. These simulations yield an exponentially decreasing profile of detector aging sensitivity with an increase in g-ray energy for point isotropic, circular disk and cylindrical volume sources highlighting a larger decrease in efficiency due to aging for low energy photons.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3