Anchoring of CoHFC nanoparticles on clinoptilolite for remedy of nuclear wastes

Author:

Yousefi Taher1,Mahmudian Hamid2,Torab-Mostaedi Meisam1,Moosavian Mohammad2,Davarkhah Reza1

Affiliation:

1. Nuclear Fuel Cycle Research School, Nuclear Science & Technology Research Institute, Tehran, Iran

2. University of Tehran, Faculty of Engineering, Department of Chemical Engineering, Tehran, Iran

Abstract

To improve the mechanical properties, the cobalt ferrocyanide precipitation was carried out on clinoptilolite as an inorganic polymer. In this work the combination of two important factors, stability (zeolite) and high adsorption capacity (cobalt ferrocyanide) were considered to improve the ions uptake ability of adsorbent. The modification was approved by X-ray diffraction, Scanning electronic microscopy and Fourier transform infrared spectroscopy. The modified zeolite was applied to remove Sr(II) and Cs(I) ions from aqueous solution in a batch system. The adsorption capacities of modified zeolite for Cs(I) and Sr(II) improved to 90 and 130 mgg-1, respectively. The Sr(II) and Cs(I) removal were investigated as a function of shaking time, pH, Sr(II), and Cs(I) initial concentration and temperature. The experimental data were fitted well to Langmuir isotherm model for two sorbet metal ions. The time dependence sorption data showed that the uptakes of Cs(I) and Sr(II) were very rapid and apparent sorption equilibriums were achieved within 100 min of contact time. The kinetic experimental data were fitted to the pseudo-first order, pseudo-second order, the double exponential, Elovich and intraparticle diffusion models. The sorption rates and capacities as well as rate constants were evaluated.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3