Analysis of controlling factors for hydraulic fracturing parameters and accumulated production using machine learning

Author:

Zhu Zhihua1,Hsu Maoya2,Li Chang1,Dai Jiacheng2,Xie Bobo1,Ma Zhengchao2,Wang Tianyu2,Li Jie1,Tian Shouceng2

Affiliation:

1. Research Institute of Engineering Technology, PetroChina Xinjiang Oilfield Company, Karamay, China

2. National Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, China

Abstract

This study, based on static data from over a thousand fracturing wells, employs data governance, data mining, and machine learning regression uncover principal controlling factors for production in the fracturing context. Preprocessing methods, including outlier identification, missing value imputation, and label encoding, address the field data challenges. Correlations among geological, engineering, and production parameters are analyzed using Pearson coefficient, grey correlation, and maximum mutual information. The AutoGluon framework and SHAP post-explanation method compute feature importance. Utilizing multiple evaluation methods, the entropy weight method comprehensively scores and ranks the principal controlling factors. A machine learning production prediction model is established for validation. Results show that DBSCAN achieves better accuracy in identifying field anomaly data.

Publisher

National Library of Serbia

Reference8 articles.

1. Liu, H., et al., Application Status And Prospects of Artificial Intelligence in the Refinement of Waterflood­ing Development Program, Acta Petrolei Sinica, 44 (2023), 9, pp. 1574-1586

2. Li, Y., et al., Application Status and Prospect of Big Data And Artificial Intelligence in Oil and Gas Field Development, Journal of China University of Petroleum (Edition of Natural Science), 44 (2020), 4, pp. 1-11

3. Kuang, L., et al., Application and Development Trend of Artificial Intelligence in Petroleum Exploration And Development, Petroleum Exploration and Development, 48 (2021), 1, pp. 1-11

4. Sheng, M., et al., Research Status and Prospect of Artificial Intelligence in Reservoir Fracturing Stimula­tion, Drilling and Production Technology, 45 (2022), 4, pp. 1-8

5. Anton, D. M., et al., Data-Driven Model for Hydraulic Fracturing Design Optimization: Focus on Build­ing Digital Database And Production Forecast, Journal of Petroleum Science and Engineering, 194 (2020), 2, ID107504

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3