Comparative analysis of a flat solar collector and flat solar collector with chemical coating

Author:

Amirgaliyev Yedilkhan1,Kunelbayev Murat1,Ormanov Talgat1,Sundetov Talgat1,Daulbayev Salauat1

Affiliation:

1. Institute of Information and Computational Technologies, Al Farabi Kazakh National University, Almaty, Kazahstan

Abstract

The given article considers results of experimental measurements, productivity comparison and master controller executive system of flat-plate solar collector with thermosiphon circulation and flat solar collector with special chemical coating. There has been developed master controllers control module, which receives data from temperature and lighting sensors, obtained in operation process. The aim of the research is getting the solar collectors? optimal parameters, representing maximal usage performance index, controllability, as well as, construction type, allowing energy saving. In the recent years flat-plate solar collectors with chemical coating are characterized with higher efficiency in real conditions usage. The developed master controllers? executive system is used for monitoring the installation?s main parameters, as well, it permits to compare characteristics of solar collector with thermosiphon circulation those of flat-plate solar collector with chemical coating. The obtained experimental data has shown, that flat solar collectors, using chemical coating as a transfer medium in solar heat supply system, have an advantage in the context of usage effectiveness. The heat output and water heating in a flat solar collector are calculated, which vary depending on the intensity of solar radiation. The thermal efficiency of a flat solar collector with a thermosiphon tank based on the Mojo V3 platform using Dallas sensors is calculated.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3