Buckling and postbuckling behavior of shell type structures under thermo mechanical loads

Author:

Vasic Zoran1,Maksimovic Katarina2ORCID,Maksimovic Mirko3ORCID,Vasovic Ivana4ORCID,Vidanovic Nenad5ORCID,Simonovic Aleksandar6

Affiliation:

1. Military Technical Institute, Belgrade, Serbia

2. City of Belgrade Administration, Belgrade, Serbia

3. PUC Belgrade Waterworks and Sewerage, Belgrade, Serbia

4. Lola Institute, Belgrade, Serbia

5. Faculty of Transport and Traffic Engineering, University of Belgrade, Belgrade, Serbia

6. Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia

Abstract

The thermo mechanical buckling and post-buckling behavior of layered composite shell type structure are considered with the finite element method under the combination of temperature load and applied mechanical loads. To account for through-thickness shear deformation effects, the thermal elastic, and higher-order shear deformation theory is used in this study. The refined higher order theories, that takes into account the effect of transverse normal deformation, is used to develop discrete finite element models for the thermal buckling analysis of composite laminates. Attention in this study is focused on analyzing the temperature effects on buckling and post-buckling behavior of thin shell structural components. Special attention in this paper is focused on studying of values of the hole in curved panel on thermal buckling behavior and consequently to expend and upgrade previously conducted investigation. Using finite element method, a broader observation of the critical temperature of loss of stability depending on the size of the hole was conducted. The presented numerical results based on higher-order shear deformation theory can be used as versatile and accurate method for buckling and post-buckling analyzes of thin-walled laminated plates under thermo mechanical loads.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Analysis of Narrow-Body Fuselage Upper Panel Redesign;Novel Techniques in Maintenance, Repair, and Overhaul;2023-11-23

2. Computational Fluid Dynamics and Strength Analysis of Composite UAV Wing;Current Problems in Experimental and Computational Engineering;2021-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3