Quantifying the density-quality of photogrammetrically created point-clouds of linear architectural/urban elements as a function of shooting distances and number of camera positions I.E. shooting-directions

Author:

Djordjevic Djordje1,Djukanovic Gordana1,Filipovic Dusan1

Affiliation:

1. Faculty of Architecture, Belgrade

Abstract

This paper examines the impact of various object-to-camera distances and the number of station-points i.e. various shooting directions with regard to the obtained Density-quality of photogrammetrically created Point-clouds - as digital representations of the existent linear architectural/urban objects/elements. According to an artificial (purified) experimental scene used, the conclusion is that with the chosen focal lengths/object-to-camera distances, with shooting directions perpendicular to the axis of that object, with station-points uniformly radially distributed around it (at a circle of 360deg), and with the obtained values of photogrammetric-software process-quality outputs which belong to the recommended ranges, the achieved density-level of the created Point-clouds may be treated as independent on the camera's radial-movement angle but dependent on the percentage of ?Object's Photo-Coverage?: the lower the Coverage, the lower the density. Also, regardless of the Coverage level, the majority of the generated points are generally more "densimetrically" precise than they are "densimetrically" accurate.

Publisher

National Library of Serbia

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3