Study on kinetic parameters of pebble bed reactor with TRISO duplex fuel

Author:

Zuhair Z1,Luthfi Wahid1,Dwijayanto Andika1,Rohanda Anis1,Suwoto S1

Affiliation:

1. National Research and Innovation Agency, KST BJ Habibie, Serpong, Tangerang Selatan, Indonesia

Abstract

Thorium, in this case, 232Th has a higher thermal neutron capture cross-section than 238U, which means that more fertile isotopes can be transmuted and could lead to higher fissile isotope 233U. In addition, 233U has a good performance in the thermal spectrum. Theoretically, a nuclear reactor using thorium fuel can also last longer than one using uranium fuel. The use of TRISO duplex fuel is predicted to produce better neutronic behavior in a pebble bed reactor. This work aims to study the kinetic parameters of a pebble bed reactor with TRISO duplex fuel. The configuration of the TRISO duplex fuel pebble consists of an inner region filled with UO2 TRISO particles and an outer region filled with ThO2 TRISO particles surrounded by a graphite matrix of fuel pebble. Three configurations with volume fraction of UO2-ThO2 were considered in this study: 80-20 %, 75-25 %, and 70-30 %. The HTR-10 reactor was chosen as a reactor model because its geometry and material specifications are known. A series of calculations were conducted using the Monte Carlo transport code MCNP6 and ENDF/B-VII.1 nuclear data library. The calculation results were then analyzed to investigate the effect of UO2 and ThO2 compositions in TRISO duplex fuel on the kinetic parameters of the pebble bed reactor with various TRISO packing fractions of 1-50 %. It can be concluded that the utilization of TRISO duplex fuel in a pebble bed reactor could significantly affect the core multiplication factor and kinetic parameters caused by an increase in Th content. On the other hand, the TRISO packing fraction is taking part in neutron moderation since a lower packing fraction means higher moderation for fueled pebble.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3