State variable-fuzzy prediction control strategy for superheated steam temperature of thermal power units

Author:

Tu Xuan1,Shi Jiakui2,Yao Kun2,Wan Jie2,Qiao Fei3

Affiliation:

1. Tongji University, Shanghai, China + Shanghai Institute of Process Automation and Instrumentation, Shanghai, China

2. Harbin Institute of Technology, Heilongjiang, Harbin, China

3. Tongji University, Shanghai, China

Abstract

With the large-scale grid connection of new energy power, the random fluctuation existing in the power system is intensified, which leads to frequent fluctuation of load instructions of thermal power units. It is of great significance to improve the variable load performance of the coal-fired units. It is more difficult to control the superheated steam temperature (SST). In order to improve the control performance of SST, a state variable fuzzy predictive control method is proposed in this paper. Firstly, Takagi-Sugeno fuzzy state observer is used to approximate the non-linear plant of the SST. At the same time, based on the state observer, a fuzzy state feedback controller is designed to improve its dynamic characteristics. Thirdly, based on the extended predictive model of the state feedback controller, a model predictive controller is designed to realize the SST tracking control. Dynamic simulation shows the effectiveness of the strategy.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3