Wetting layer evolution and interfacial heat transfer in water-air spray cooling process of hot metallic surface

Author:

Ning Lidan1,Zou Liping1,Li Zhichao1,Li Huiping1

Affiliation:

1. School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, PR China

Abstract

Spray cooling experiments on the hot metallic surfaces with different initial temperatures were performed. This paper adopts a self-developing program which is based on the inverse heat transfer algorithm to solve the interfacial heat transfer coefficient and heat flux. The temperature-dependent interfacial heat transfer mechanism of water-air spray cooling is explored according to the wetting layer evolution taken by a high-speed camera and the surface cooling curves attained by the inverse heat transfer algorithm. Film boiling, transition boiling, and nucleate boiling stages can be noticed during spray cooling process of hot metallic surface. When the cooled surface?s temperature drops to approximately 369?C - 424?C; the cooling process transfers into the transition boiling stage from the film boiling stage. The wetting regime begins to appear on the cooled surface, the interfacial heat transfer coefficient and heat flux begin to increase significantly. When the cooled surface?s temperature drops to approximately 217?C - 280?C, the cooling process transfers into the nucleate boiling stage. The cooled surface was covered by a liquid film, and the heat flux begins to decrease significantly.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3