Production of lipase from Pseudozyma aphidis and determination of the activity and stability of the crude lipase preparation in polar organic solvents

Author:

Dimitrijevic Aleksandra1ORCID,Velickovic Dusan1,Bezbradica Dejan2,Bihelovic Filip1ORCID,Jankov Ratko1,Milosavic Nenad1

Affiliation:

1. Faculty of Chemistry, Belgrade

2. Faculty of Technology and Metallurgy, Belgrade

Abstract

The production of lipase from Pseudozyma aphidis (DSM 70725) was determined in six different media. The highest lipase production was observed in a medium with glucose as the sole carbon source, and yeast extract and sodium nitrate as the nitrogen sources. The time course studies of growth and lipase production in the optimal medium revealed that the highest lipase production was achieved at the end of the log phase of growth, reaching the value of 35.0 U cm-3 in the fifth day of cultivation. The effects of various polar, water-miscible, organic solvents on the activity and stability of the crude lipase produced by P. aphidis were evaluated. The hydrolytic activity of the crude lipase towards p-nitrophenyl palmitate (p-NPP) in aqueous media and in organic solvents was determined, using the same spectrophotometric assay in both the aqueous and organic media. The crude lipase preparation exhibited activity towards p-NPP only in acetone and acetonitrile, while the lipase was stable only in acetone, with 23 % residual activity after 24 h of incubation. These results suggested that lipase from P. aphidis can be used as a biocatalyst for potential applications in such organic solvents.

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3