Generalized Fiedler pencils with repetition for rational matrix functions

Author:

Behera Namita1

Affiliation:

1. Department of Mathematics, Sikkim University, Sikkim, India

Abstract

We introduce generalized Fiedler pencil with repetition(GFPR) for an n x n rational matrix function G(?) relative to a realization of G(?). We show that a GFPR is a linearization of G(?) when the realization of G(?) is minimal and describe recovery of eigenvectors of G(?) from those of the GFPRs. In fact, we show that a GFPR allows operation-free recovery of eigenvectors of G(?). We describe construction of a symmetric GFPR when G(?) is symmetric. We also construct GFPR for the Rosenbrock system matrix S(?) associated with an linear time-invariant (LTI) state-space system and show that the GFPR are Rosenbrock linearizations of S(?). We also describe recovery of eigenvectors of S(?) from those of the GFPR for S(?). Finally, We analyze operation-free Symmetric/self-adjoint structure Fiedler pencils of system matrix S(?) and rational matrix G(?). We show that structure pencils are linearizations of G(?).

Publisher

National Library of Serbia

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fiedler Linearizations for Higher Order State-Space Systems;The Journal of the Indian Mathematical Society;2022-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3