Effective rough boundary parametrization for reaction-diffusion systems

Author:

Mocenni C.1,Sparacino E.1,Zubelli J.P.2

Affiliation:

1. University of Siena, Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Siena, Italy

2. Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina, Rio de Janeiro, Brasil

Abstract

We address the problem of parametrizing the boundary data for reaction- diffusion partial differential equations associated to distributed systems that possess rough boundaries. The boundaries are modeled as fast oscillating periodic structures and are endowed with Neumann or Dirichlet boundary conditions. Using techniques from homogenization theory and multiple-scale analysis we derive the effective equation and boundary conditions that are satisfied by the homogenized solution. We present numerical simulations that validate our theoretical results and compare it with the alternative approach based on solving the same equation with a smoothed version of the boundary. The numerical tests show the accuracy of the homogenized solution to the effective system vis a vis the numerical solution of the original differential equation. The homogenized solution is shown undergoing dynamical regime shifts, such as anticipation of pattern formation, obtained by varying the diffusion coefficient.

Publisher

National Library of Serbia

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turing patterns in domains with periodic inhomogeneities; a homogenization approach;Chaos, Solitons & Fractals;2024-02

2. Nonlocal problems in perforated domains;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2019-01-25

3. Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries;Computers & Mathematics with Applications;2019-01

4. Oscillations of Bubble Shape Cause Anomalous Surfactant Diffusion: Experiments, Theory, and Simulations;Langmuir;2016-08-18

5. Remarks on the p-Laplacian on thin domains;Contributions to Nonlinear Elliptic Equations and Systems;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3