Effect of dust deposition on the performance of photovoltaic modules in Taxila, Pakistan

Author:

Ali Hafiz1,Zafar Muhammad2,Bashir Muhammad2,Nasir Muhammad2,Ali Muzaffar2,Siddiqui Aysha3

Affiliation:

1. University of Engineering and Technology, Department of Mechanical Engineering, Taxila, Pakistan + King Fahd University of Petroleum and Minerals, Center of Research Excellence in Renewable Energy, Dhahran, Saudi Arabia

2. University of Engineering and Technology, Department of Mechanical Engineering, Taxila, Pakistan

3. COMSATS Institute of Information Technology, Department of Electrical Engineering, Wah, Pakistan

Abstract

The air borne dust deposited on the surface of photovoltaic module influence the transmittance of solar radiations from the photovoltaic modules glazing surface. This experimental work aimed to investigate the effect of dust deposited on the surface of two different types of photovoltaic modules (monocrystalline silicon and polycrystalline silicon). Two modules of each type were used and one module from each pair was left exposed to natural atmosphere for three months of winter in Taxila, Pakistan. Systematic series of measurements were conducted for the time period of three months corresponding to the different dust densities. The difference between the output parameters of clean and dirty modules provided the information of percentage loss at different dust densities. The dust density deposited on the modules surface was 0.9867 mg/cm2 at the end of the study. The results showed that dust deposition has strong impact on the performance of photovoltaic modules. The monocrystalline and polycrystalline modules showed about 20% and 16% decrease of average output power, respectively, compared to the clean modules of same type. It was found that the reduction of module efficiency (?clean ? ?dirtv) in case of monocrystalline and polycrystalline module was 3.55% and 3.01%, respectively. Moreover the loss of output power and module efficiency in monocrystalline module was more compared to the polycrystalline module.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3