Micropolar fluid between two coaxial cylinders (numerical approach)

Author:

Salemovic Dusko1,Dedic Aleksandar2,Jovanovic Bosko3

Affiliation:

1. Technical School of Applied Science, Zrenjanin, Serbia

2. Faculty of Forestry, University of Belgrade, Belgrade, Serbia

3. Faculty of Mathematics, University of Belgrade, Belgrade, Serbia

Abstract

The paper describes the flow of a suspension which is a mixture of two phases: liquid and solid granules. The continuum model with microstructure is introduced, which involves two independent kinematic quantities: the velocity vector and the micro-rotation vector. The physical analogy is based on the movement of the suspension between two coaxial cylinders. The inner cylinder is stationary and the outer one rotates with constant angular velocity. This physical analogy enabled a mathematical model in a form of two coupled differential equations with variable coefficients. The aim of the paper is to present the numerical aspect of the solution for this complex mathematical model. It is assumed that the solid granules are identically oriented and that under the influence of the fluid they move translationally or rotate around the symmetry axis but the direction of their symmetry axes does not change. The solution was obtained by the ordinary finite difference method, and then the corresponding sets of points (nodes) were routed by interpolation graphics.

Publisher

National Library of Serbia

Subject

Applied Mathematics,Mechanical Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3