Affiliation:
1. Faculty of Sciences and Mathematics - Department of Biology and Ecology, Niš
2. Institute of Oncology and Radiology of Serbia - National Cancer Research Center, Belgrade
Abstract
Cancer gene therapy can be defined as transfer of nucleic acids into tumor or normal cells with aim to eradicate or reduce tumor mass by direct killing of cells, immunomodulation or correction of genetic errors, and reversion of malignant status. Initially started with lots of optimism and enthusiasm, cancer gene therapy has shown limited success in treatment of patients. This review highlights current limitations and almost endless possibilities of cancer gene therapy. The major difficulty in advancing gene therapy technology from the bench to the clinical practice is problem with gene delivery vehicles (so called vectors) needed to ferry genetic material into a cell. Despite few reports of therapeutic responses in some patients, there is still no proof of clinical efficacy of most cancer gene therapy approaches, primarily due to very low transduction and expression efficacy in vivo of available vectors. An "ideal" gene therapy vector should be administrated through a noninvasive route and should be targeted not only to primary tumor mass but also to disseminated tumor cells and micrometastases; it should also carry therapeutic gene with tumor-restricted, time-regulated, and sustained expression. Current strategies for combating the cancer with gene therapy can be divided into four basic concepts: (1) replacement of missing tumor suppressor gene and/or blocking of oncogenes or pro-inflammatory genes, (2) suicide gene strategies, (3) induction of immune-mediated destruction, and (4) inhibition of tumor angiogenesis. The advance in the clinical benefit of gene therapy will probably be first achieved with combining it with standard cancer treatment: chemotherapy, radiotherapy, and immunotherapy.
Publisher
National Library of Serbia
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献