Adaptation of n-heptane autoignition tabulation for complex chemistry mechanisms

Author:

Ban Marko,Duic Neven

Abstract

The adaptation of auto-ignition tabulation for effective use of complex chemical mechanisms will be presented in this paper. Taking cool flame ignition phenomenon into account could improve numerical simulations of combustion in compression ignition engines. Current approaches of successful simulation of this phenomenon are based on the extraction of ignition delay times, heat releases and also reaction rates from tabulated data dependant on four parameters: temperature, pressure, equivalence ratio and exhaust gasses mass fraction. The methods described here were used to create lookup tables including cool flame using a comprehensive chemical mechanism without including reaction rates data (as used by other authors). The method proved to be stable for creating tables and these results will be shown, as well as initial implementation results using the tables in computational fluid dynamics software.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3