The charge percolation mechanism and simulation of Ziegler-Natta polymerizations. Part III. Oxidation states of transition metals

Author:

Pilic Branka1,Stoiljkovic Dragoslav1,Bakocevic Ivana1,Jovanovic Slobodan2,Panic Davor3,Korugic-Karasz Ljiljana4

Affiliation:

1. Tehnološki fakultet, Novi Sad

2. Tehnološko-metalurški fakultet, Beograd

3. Tehnički fakultet, Novi Sad

4. Polymer Science and Engineering, University of Massachusetts, Amherst

Abstract

The oxidation state of the transition metal (Mt) active centre is the most disputable question in the polymerization of olefins by Ziegler-Natta (ZN) and metallocene complexes. In this paper the importance and the changes of the Mt active centers are presented and discussed on the basis of a charge percolation mechanism (CPM) of olefin polymerization. Mt atoms can exist in different oxidation states and can be easily transformed from one to another state during activation. In all cases, the Mt atoms are present in several oxidation states, i.e., Mt+(n-1), Mt+(n) to Mt+(n+1), producing an irregular charge distribution over the support surface. There is a tendency to equalize the oxidation states by a charge transfer from Mt+(n-1) (donor) to Mt+(n+1) (acceptor). This cannot occur since the different oxidation states are highly separated on the support. However, monomer molecules are adsorbed on the support producing clusters with stacked ?-bonds, making a ?-bond bridge between a donor and an acceptor. Once a bridge is formed (percolation moment), charge transfer occurs. The donor and acceptor equalize their oxidation states simultaneously with the polymerization of the monomer. The polymer chain is desorbed from the support, freeing the surface for subsequent monomer adsorption. The whole process is repeated with the oxidation-reduction of other donor-acceptor ensembles.

Publisher

National Library of Serbia

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3