Application of energy-saving structural design under numerical simulation in solar heating buildings

Author:

Li Yang1

Affiliation:

1. Xuancheng vocational and Technical College, Xuan Cheng, China

Abstract

The research is to explore the changes in solar heating buildings under energy-saving structural design. This paper analyzes the changes in solar heating buildings under energy-saving structural design by constructing a numerical simulation method. It mainly studies the effects of the space temperature of the house, different thermal insulation methods, and wall thermal resistance on solar heating buildings. The energy-saving structural design mainly includes expanding the area of exterior windows, increasing heat retainers, adopting energy-saving walls, and improving the building envelope. The results show that after the energy-saving structural design, the indoor temperature of the solar heating building after the renovation has been greatly increased, with an average increase of about 6 ?C. Compared with the external insulation and internal insulation modes, the solar heating building under the sandwich insulation mode has the best effect, and the room temperature increases the most. Also, it shows that the east wall, west wall, and north wall of the building are increasing the energy saving per unit area of the wall as the wall thermal resistance increases. The difference is that the increasing range of the north wall has significant advantages over the east wall and the west wall. The energy-saving structural design for solar heating buildings under the numerical simulation method has significantly improved the utilization efficiency of solar energy. It reduces the consumption of traditional fossil resources and improves the quality of the environment. This paper?s research has a positive effect on subsequent research.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3