A generalized mathematical model for efficiency calibration of gamma detectors: Application to practical cases

Author:

Mihaljevic Nikola1,Jovanovic Slobodan2,Dlabac Aleksandar3

Affiliation:

1. University of Montenegro, Maritime Faculty, Department of Mathematics, Kotor, Montenegro + University of Montenegro, Centre for Nuclear Competence and Knowledge Management, Podgorica, Montenegro

2. University of Montenegro, Centre for Nuclear Competence and Knowledge Management, Podgorica, Montenegro + University of Montenegro, Faculty of Natural Sciences and Mathematics, Department of Physics, Podgorica, Montenegro

3. University of Montenegro, Centre for Nuclear Competence and Knowledge Management, Podgorica, Montenegro

Abstract

Efficiency calibration, i. e. determination of detection efficiency, ?p, is a crucial issue in gamma spectrometry (quantification of gamma spectroscopic measurements) with semiconductor and scintillation detectors. Comparing three possible ways to addressing the problem ? relative, absolute and semi empirical ? advantages of the latter are emphasized. Among semi empirical models, efficiency transfer using effective solid angles, ??, is sorted out and briefly elaborated. This approach reduces the problem of efficiency calibration to the determination of ??. It proved reliable and has been broadly used in practice, mainly in the form of the long existing ANGLE software. Progressing further, a generalized mathematical formula for calcu- lations is developed ? first of the kind ? offering an opportunity for advanced applications of gamma spectrometry. The formula enables unlimited flexibility in application, as it conveniently separates the source data from the detector data during the integration procedures ?? calculations). Its practicality is demonstrated for a number of typically encountered counting arrangements, as well as for some exotic ones. The relevant formulae are used in PC calculations and numerical testing is further performed so as to check the validity of the mathematical method and the computer code. Care was taken of the optimization of complex numerical procedures employed (involving fivefold numerical integration), so as to keep computation times as low as possible (in order of minutes or even seconds on ordinary PC). Results obtained are affirmative for both the method and the code. The model will be gradually incorporated into ANGLE software, thus making it readily available for routine use by gamma spectrometry community.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3