Affiliation:
1. Faculty of Mechanical Engineering, Niš
Abstract
Buildings are significant energy consumers and provide a notable potential to reduce primary energy consumption and increase energy efficiency. Cost-effectiveness of energy efficiency projects is of crucial importance for their implementation. Cost-optimality of different packages of energy retrofit measures is studied across the EU, but Serbia mostly lacks such information. This paper analyzes cost-optimal solutions for Serbian residential buildings connected to district heating systems, considering three different scenarios related to the economic input parameters. Additionally, it considers the potential for primary energy savings beyond cost-optimality and associated costs. The optimal solutions, that correspond to minimal global cost or minimal primary energy consumption, are determined as the results of the combinatorial optimization problems. These problems are solved using the genetic algorithm and local search. The results are compared against the ones obtained with the sensitivity analysis. The global cost can be reduced by 8-43% in the cases of cost-optimal solutions, simultaneously saving 30-76% of primary energy. The potential to save primary energy is higher - it exceeds 70% in all the analyzed cases, but also requires higher global cost, sometimes larger than in the absence of the retrofit. The paper also emphasizes high dependencies of the results on very uncertain economic inputs.
Publisher
National Library of Serbia
Subject
Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献