Solar energy contribution to the energy demand for air conditioning system in an office building under Tripoli climate conditions

Author:

Musbah Mohamed1,Zivkovic Branislav1,Kosi Franc1,Abdulgalil Mohamed1,Sretenovic Aleksandra1

Affiliation:

1. Faculty of Mechanical Engineering, Belgrade

Abstract

The feasibility of solar assisted air conditioning in an office building under Tripoli weather conditions is investigated in this paper. A single-effect lithium bromide absorption cycle powered by means of flat-plate solar collectors was modeled in order to predict the potential of the solar energy share. The cooling load profile was generated by using an detailed hourly based program and Typical meteorological year for Tripoli. System performance and solar energy fraction were calculated by varying two major parameters (collector?s slope angle and collector area). The maximum solar fraction of 48% was obtained by means of 1400 m2 of collector surface area. Analysis of results showed that, besides the collector surface area, the main factors affecting the solar fraction were the local weather conditions (intensity of incident solar radiation) and the time of day when the plant was operated.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation Study of Solar Assisted Absorption Cooling System using Flat Plate Collectors at Erbil City-Iraq;2022 8th International Engineering Conference on Sustainable Technology and Development (IEC);2022-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3