Some results of fredholm perturbations of multivalued linear operator in normed spaces

Author:

Ammar Aymen1,Ezzadam Aicha1,Jeribi Aref1

Affiliation:

1. Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia

Abstract

In the present paper, we establish first the relation between the perturbation of upper Fredholm and strictly singular, and then the relation between lower semi-Fredholm and strictly cosingular linear relations. Most importantly in Theorem 3.4, we show that P(F?(X,Y)) coincides with SC(X,Y).We bring to light, the relationship between the essential spectra of a multivalued linear operator and its selection

Publisher

National Library of Serbia

Subject

General Mathematics

Reference11 articles.

1. F. Abdmouleh and A. Jeribi, Gustafon, Weidman, Kato, Wolf, Schechter, Browder, Rakočevié and Schmoeger essential spectra of the sum of two bounded operators and application to a transport operator. Math. Nachr. 284(2-3), 166-176 (2011).

2. T. Álvarez, A. Ammar and A. Jeribi, A Characterization of some subsets of S-essential spectra of a multivalued linear operator. Colloq. Math. 135, no. 2, 171-186 (2014).

3. A. Ammar, T. Diagana and A. Jeribi, Perturbations of Fredholm linear relations in Banach spaces with application to 3 × 3-block matrices of linear relations. Arab journal of mathematical sciences volume 22, issue 1, 59-76 (2015).

4. A. Ammar and A. Jeribi, Spectral Theory of Multivalued Linear Operators. Apple Academic Press, (2021).

5. A. Ammar, A. Jeribi and N. Moalla, A note on the spectra of a 3 × 3 operator matrix and application. Ann. Funct. Anal. 4, no. 2, 95-112 (2013).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3