Potential of tubular solar still with rectangular trough for water production under vacuum condition

Author:

Ben Hamida1,Alshammari Fuhaid2,Alatawi Ibrahim2,Alhadri Muapper2,Almeshaal Mohammed3,Hajlaoui Khalil3

Affiliation:

1. College of Engineering, Department of Chemical Engineering, University of Ha‛il, Ha‛il City, Saudi Arabia + Research Laboratory of Ionized Backgrounds and Reagents Studies (EMIR), Preparatory Institute for Engineering Studies of Monastir (IPEIM), University of Monastir, Monastir city, Tunisia + Higher School of Sciences and Technology of Hammam Sousse, Department of Physics, University of Sousse, Sousse City, Tunisia

2. College of Engineering, Department of Chemical Engineering, University of Ha‛il, Ha‛il City, Saudi Arabia

3. College of Engineering, Department of Mechanical Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia

Abstract

Water scarcity, energy scarcity, and demographic difficulties are all real concerns for many countries throughout the world. Due to the high solar intensities and long sunshine duration in Saudi Arabia, solar water desalination can be effectively utilized for obtaining fresh water. The aim of this paper is explore the potential of simple-design and plentiful rectangular trough in desalination under vacuum condition. Numerical analysis of the heat and mass transfer of tubular solar still containing rectangular trough was performed. A 2-D code that solves the systems of equations for mass, momentum, concentration, and energy was developed and validated. The effect of the rib and the vertical elevation of the trough on heat and mass transfer were investigated. The numerical results showed that the distillation rate is significantly increased with the increase of the rib of the trough at a minimum of 19.78%. In addition, the distillation rate is increased at a minimum of 12.88% when the trough moves towards the upper side of the glass cover where the condensation takes place.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3