A novel carbon paste electrode based on nitrogen-doped hydrothermal carbon for electrochemical determination of carbendazim

Author:

Kalijadis Ana1,Djordjevic Jelena1,Papp Zsigmond2ORCID,Jokic Bojan3,Spasojevic Vuk1,Babic Biljana1,Trtic-Petrovic Tatjana1ORCID

Affiliation:

1. Vinča Institute of Nuclear Sciences, Belgrade

2. John Naisbitt University, Faculty of Biofarming, Bačka Topola

3. Faculty of Technology and Metallurgy, Belgrade

Abstract

In this work, a new carbon paste electrode, prepared from nitrogen- -doped hydrothermal carbon (CHTCN) was applied for the electrochemical detection and determination of carbendazim fungicide. CHTCN samples with the nominal nitrogen content 0.05?0.5 wt. % in glucose precursor were prepared by simple, low-cost synthesis with the accompanying carbonization to 1273 K. The presence of nitrogen in CHTCN samples was confirmed by elemental analysis. Characterization of CHTCN as material for carbon paste electrode was achieved by cyclic voltammetry measurement of the Fe(CN)6 3-/4- redox couple. The results showed that best electrochemical response was obtained from the sample with a nominal nitrogen concentration of 0.1 wt. % and with tricresyl phosphate as a binder. During the development of a differential pulse stripping voltammetric method for carbendazim determination applying new electrode, the following experimental parameters were studied: the sort and amount of binding liquid, the effect of pH, accumulation potential and accumulation time. Under optimal conditions, the electrode offered linearity in the wide concentration range from 25 to 490 ng cm-3 and an estimated detection limit of 1.21 ng cm-3. Moreover, the electrode showed good stability, high selectivity and satisfactory anti-interference ability. Finally, the developed method was successfully applied for the determination of carbendazim traces in spiked tap and river water samples.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3