Genetic diversity and population structure of the narrow endemic and endangered species Heteroplexis microcephala Y. L. Chen. in China revealed by random amplified polymorphic DNA markers

Author:

Shi Yancai1,Wei Xiao2,Wei Jiqing2,Li Yongtao3,Chai Shengfeng2,Tang Jianming2

Affiliation:

1. South China Agriculture University,College of Natural Resources and Environment, Guangzhou, PR China + Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guilin, PR China + Chinese Academy of Sciences, Guangxi Institute of Botan

2. Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guilin, PR China + Chinese Academy of Sciences, Guangxi Institute of Botany, Guilin, PR China

3. South China Agriculture University,College of Natural Resources and Environment, Guangzhou, PR China

Abstract

Heteroplexis microcephala Y. L. Chen. is an endemic and endangered species found only in karst limestone regions in the Yangshuo County of the Guangxi Zhuang Autonomous Region in China: it is a habitat representative of species in the Heteroplexis genus. To provide basic genetic information for its conservation, in this study we evaluated the genetic variation and differentiation among six wild populations of H. microcephala by random amplified polymorphic DNA markers (RAPD). The leaves of 141 individuals were sampled. Based on 12 primers, 113 DNA fragments were generated. Genetic diversity was low at the population level (Nei?s gene diversity (h)=0.0579; Shannon information index (I)=0.0924; percentage of polymorphic bands (PPB)=23.30%), but relatively high at the species level (h=0.1701; I=0.2551; PPB=46.34%). The coefficient of genetic differentiation based on Nei?s genetic diversity analysis (0.6661) was high, indicating that there was significant genetic differentiation among populations, which was confirmed by AMOVA analysis exhibiting population differentiation among populations of 68.77%. Low gene flow among populations (0.2507) may result from several factors, such as a harsh pollination environment, population isolation and low seed dispersal distance. Limited gene flow and self-compatibility are the primary reasons for the high genetic differentiation observed for this species. We propose the collection of seeds from more populations with fewer individuals and core populations for ex situ conservation and suggest methods to increase seed germination rates.

Publisher

National Library of Serbia

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3