Human-level moving object recognition from traffic video

Author:

Zhu Fei1,Liu Quan1,Zhong Shan2,Yang Yang3

Affiliation:

1. Soochow University, School of Computer Science and Technology, Suzhou, China + Jilin University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Changchun, China

2. Soochow University, School of Computer Science and Technology, Suzhou, China

3. Lund University, Lund, Sweden

Abstract

Video preserves valuable raw information. Understanding these data and then recognizing objects and tagging them are crucial to intelligent planning and decision making. Deep learning provides us an effective way to understand big data with a human-level. As traffic video is characterized by crowded scene and low definition, it will be non-effective to deal with the whole image once. An alternative way is to separate image and determine a small window for each moving object. A Q-learning based moving object recognition approach, which firstly finds out moving object region and then uses a Q-learning based optimization method to determine the most compact region that contain the moving object, is proposed. The algorithms enable to detect the most compact rectangle around the moving object at near real-time speed. After that, a deep neural network is used to semantic tag the recognized objects. The experiment results show the algorithms work effectively.

Publisher

National Library of Serbia

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3