DRN-SEAM: A deep residual network based on squeeze-and-excitation attention mechanism for motion recognition in education

Author:

Hua Xinxiang1

Affiliation:

1. College of Marxism, Zhengzhou University of Science and Technology Zhengzhou, China

Abstract

In order to solve the shortcomings of the traditional motion recognition methods and obtain better motion recognition effect in education, this paper proposes a residual network based on Squeeze-and-Excitation attention mechanism. Deep residual network is widely used in various fields due to the high recognition accuracy. In this paper, the convolution layer, adjustment batch normalization layer and activation function layer in the deep residual network model are modified. Squeeze-and-Excitation (SE) attention mechanism is introduced to adjust the structure of network convolution kernel. This operation enhances the feature extraction ability of the new network model. Finally, the expansibility experiments are conducted on WISDM(Wireless Sensor Data Mining), and UCI(UC Irvine) data sets. In terms of F1, the value exceeds 90%. The results show that the proposed model is more accurate than other state-of-the-art posture recognition models. The proposed method can obtain the ideal motion recognition results.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fake News Detection Using Deep Neuro-Fuzzy Network;Tehnicki vjesnik - Technical Gazette;2024-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3