Improvement of the monochlorobenzene separation process through heat integration: A sustainability-based assessment

Author:

Paiva Ana1,Santos Rafael2,Maia Mônica1,Prata Diego1

Affiliation:

1. Department of Chemical and Petroleum Engineering, Universidade Federal Fluminense, Niterói, Brazil

2. Chemical Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Abstract

Chlorobenzene is an important chemical intermediate in the production of commodities, such as herbicides, dyestuffs, and rubber. In this work, a heat integration was proposed for a monochlorobenzene separation process. The conventional process structure and the proposed integrated one were designed and simulated. An optimization focused on minimizing the cooling and heating costs was performed to obtain the best-operating conditions for the heat integration. The simulation of a utility plant, including cooling water and steam generation sections, was also carried out for more accurate estimations of CO2 emissions, water, energy consumption, and operating costs. The processes were evaluated and compared in terms of their sustainable performances using the eco-efficiency comparison index method and environmental and economic indicators, such as CO2 emission, water consumption, and utility cost, to assess the benefits of heat integration. The results demonstrated that the proposed strategy reduced around 57% of all environmental impacts and utility costs. As the composite evaluation index from the performance indicators showed, the proposed optimal heat integrated industrial plant significantly improved the initial processes? eco-efficiencies, up to 83%, proving a suitable strategy for a more sustainable process.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3