Study of catalytic oxidation of toluene using Cu-Mn, Co-Mn and Ni-Mn mixed oxides catalysts

Author:

de Moraes1,Poncinelli Gabriela1,Rodrigues Aron1,do Couto1,Fávaro Silvia2,de Colman1

Affiliation:

1. Universidade Federal Fluminense, Chemical Engineering and Petroleum Department, Niterói, Brazil

2. Universidade Estadual de Maringá, Mechanical Engineering Department, Maringá, Brazil

Abstract

The successful synthesis of AMn2O4 (A = Co, Cu, and Ni) spinels via solution combustion was achieved in less time than other methods. All catalysts with the same fuel/nitrate ratio were used to oxidize toluene, and the relationship between their properties and activities was investigated. Among all, nickel manganite exhibited the most promising activity, and by changing the fuel/nitrate ratio, it was sought to obtain the most appropriate structure for the reaction studied. Physico-chemical analysis was used to define the characteristics of the synthesized catalysts. The results showed the successful synthesis of spinels and indicated that other materials peaks (single oxide phases) exist in the catalyst structure. BET-BJH analyses reveal the mesoporous structures and, given the limitations of the equipment, were all classified as less than 10 m2/g. The SEM images evidence the influence of the urea content used. The particle size increases at higher fuel/nitrate ratios. Samples of NiMn1.67 and NiMn2.08 showed larger and denser, sparsely dispersed clusters. Simultaneously considering reactor analysis and test results, it was found that the synthesized catalyst with a fuel/nitrate ratio of 0.5 has the best performance on toluene oxidation.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3