The chemometric study of limestone physico-chemical properties and thermal behavior for application in construction composites

Author:

Radulovic Dragan1,Terzic Anja2ORCID,Pezo Lato3ORCID,Andric Ljubisa1,Grigorova Irena4

Affiliation:

1. Institute for Technology of Nuclear and other Mineral Raw Materials, Belgrade

2. Institute for Testing of Materials IMS, Belgrade

3. Institute of General and Physical Chemistry, Belgrade

4. University of Mining and Geology "St. Ivan Rilski", Department of Mineral Processing and Recycling, Sofia, Bulgaria

Abstract

The limestone, as an economically sustainable and easily available basic raw material, is frequently utilized in the building industry for resolving of the environmental protection issues. The limestone is incorporated in a cementitious system either by grinding with cement clinker, or by blending with the binder during concrete production. The employing of powdery limestone as partial cement replacement gives the construction composites with properties comparable to that of conventional concrete. The study of limestone thermal behavior and its chemistry is crucial for the prognosis of the designed composites properties. In this work, the instrumental techniques (atomic emission spectroscopy, differential thermal and thermo-gravimetric analysis, Fourier transform infrared spectroscopy) and the Principal component analysis were employed to discriminate and classify 22 limestone types. The PCA statistical method, as a means of spectra and experimental data fingerprinting, grouped the samples in a multi-dimensional factor space producing four graphical prognosis - one for each instrumental method. DTA/TG peak values varied the most in a short range between 830-870?C, while FTIR spectra showed the highest diversity in the 867-887 cm-1 and 1237-1647 cm-1 ranges. This research was governed by an idea to reveal whether it is possible to differentiate various limestone types and to predict the possibility of their employment in construction composites on the basis of the results of instrumental and mathematical analyses.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3