Visualisation of the interaction between Acidithiobacillus ferrooxidans and oil shale by atomic force microscopy

Author:

Milic Jelena1,Beskoski Vladimir1ORCID,Randjelovic Danijela2,Stojanovic Jelica3,Vrvic Miroslav4ORCID

Affiliation:

1. Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, Belgrade

2. Department of Microelectronic Technologies and Single Crystals, Institute of Chemistry, Technology and Metallurgy, Belgrade

3. Faculty of Science, Kragujevac

4. Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, Belgrade + Department of Biochemistry, Faculty of Chemistry, Belgrade

Abstract

This study visually documents the mechanical contact and interaction between the bacterial cells of two biogeocenotically different strains of Acidithiobacillus ferrooxidans (At. ferrooxidans) and oil shale containing pyrite. Atomic force microscopy (AFM) imaging was used to visualise initial interaction between the microorganisms and the surface minerals of an oil shale and to evaluate bacterial effects in the first hours of the bioleaching process. Acidithiobacillus ferrooxidans was attached to the shale surface already after 2 h, and after 48 h, numerous cells covered the surface with a biofilm. After 5 day incubation with At. ferrooxidans, AFM imaging revealed ellipsoid etched pits that represent footprints left by detached cells. Combining AFM surface imaging and leaching analysis following bacterial colonisation of oil shale layers demonstrates that an initial attachment to the surface is necessary for the leaching and that later on, once a sufficient concentration of Fe2+ ions in the solution is achieved, cells detach to become free cells, and leaching occurs primarily by the Fe3+. This experiment confirmed that microorganisms isolated from sites in which a particular substrate is found will demonstrate stronger binding to that substrate.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3