Possible application of brewer’s spent grain in biotechnology

Author:

Pejin Jelena1,Radosavljevic Milos1,Grujic Olgica1,Mojovic Ljiljana2,Kocic-Tanackov Suncica1,Nikolic Svetlana2,Djukic-Vukovic Aleksandra2

Affiliation:

1. Faculty of Technology, Novi Sad, Serbia

2. Faculty of Technology and Metallurgy, Beograd, Serbia

Abstract

Brewer?s spent grain is the major by-product in beer production. It is produced in large quantities (20 kg per 100 liters of produced beer) throughout the year at a low cost or no cost, and due to its high protein and carbohydrates content it can be used as a raw material in biotechnology. Biotechnological processes based on renewable agro-industrial by-products have ecological (zero CO2 emission, eco-friendly by-products) and economical (cheap raw materials and reduction of storage costs) advantages. The use of brewer?s spent grain is still limited, being basically used as animal feed. Researchers are trying to improve the application of brewer?s spent grain by finding alternative uses apart from the current general use as an animal feed. Its possible applications are in human nutrition, as a raw material in biotechnology, energy production, charcoal production, paper manufacture, as a brick component, and adsorbent. In biotechnology brewer?s spent grain could be used as a substrate for cultivation of microorganisms and enzyme production, additive of yeast carrier in beer fermentation, raw material in production of lactic acid, bioethanol, biogas, phenolic acids, xylitol, and pullulan. Some possible applications for brewer?s spent grain are described in this article including pre-treatment conditions (different procedures for polysaccharides, hemicelluloses, and cellulose hydrolysis), working microorganisms, fermentation parameters and obtained yields. The chemical composition of brewer?s spent grain varies according to barley variety, harvesting time, malting and mashing conditions, and a quality and type of unmalted raw material used in beer production. Brewer?s spent grain is lignocellulosic material rich in protein and fibre, which account for approximately 20 and 70% of its composition, respectively.

Publisher

National Library of Serbia

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3