Haar wavelet operational matrix based numerical inversion of Laplace transform for irrational and transcendental transfer functions

Author:

Stanimirovic Zdravko1ORCID,Stanimirovic Ivanka1ORCID,Galovic Slobodanka1ORCID,Djordjevic Katarina1,Suljovrujic Edin1ORCID

Affiliation:

1. Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade

Abstract

Irrational and transcendental functions can often be seen in signal processing or physical phenomena analysis as consequences of fractional-order and distributed order models that result in fractional or partial differential equations. In cases when finding solution in analytical form tends to be difficult or impossible, numerical calculations such as Haar wavelet operational matrix method can be used. Haar wavelet establishes a direct procedure for transfer function inversion using the wavelet operational matrix for orthogonal function set integration. In this paper an inverse Laplace transform of irrational and transcendental transfer functions using Haar wavelet operational matrix is proposed. Results for a number inverse Laplace transforms are numerically solved and compared with the analytical solutions and solutions provided by commonly used Invlap and NILT algorithms. This approach is useful when the original cannot be represented by an analytical formula and validity of the obtained result needs to be crosschecked and error estimated.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Reference22 articles.

1. G. Hariharan and K. Kannan, "A comparative study of Haar Wavelet Method and Homotropy Perturbation Method for solving one-dimensional Reaction-Diffusion Equations", Int. J. Appl. Math. Comput., vol. 3, no. 1, pp. 21-34, 2011.

2. Y. Chen, Y. Wu, Y. Cui, Z. Wang and D. Jin, "Wavelet method for a class of fractional convection-diffusion equation with variable coefficients", J. Comput. Sci., vol. 1, no. 3, pp. 146-149, 2010.

3. N. M. Bujurke, S. C. Shiralashetti and C. S. Salimath, "An application of single-term Haar wavelet series in the solution of nonlinear oscillator equations", J. Comput. Appl. Math., vol. 227, no. 2, pp. 234-244, 2009.

4. V. Bruni, B. Piccoli and D. Vitulano, "Wavelets and partial differential equations for image denoising", Electron. Lett. Comput. Vis. Image Anal., vol. 6, no. 2, pp. 36-53, 2008.

5. G. Hariharan and K. Kannan, "An Overview of Haar Wavelet Method for Solving Differential and Integral Equations", World Appl. Sci. J., vol. 23, no. 12, pp. 1-14, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3