The biotechnological production of xanthan on vegetable oil industry wastewaters (part II): Kinetic modelling and process simulation

Author:

Bajic Bojana1ORCID,Vucurovic Damjan1ORCID,Dodic Sinisa1ORCID,Roncevic Zorana1ORCID,Grahovac Jovana1ORCID,Dodic Jelena1ORCID

Affiliation:

1. Faculty of Technology, Department of Biotechnology and Pharmaceutical Engineering, Novi Sad

Abstract

Xanthan is a microbial biopolymer with a wide range of industrial applications and it is expected that the demand for this product will significantly increase in the coming decade and for this reason it is important to constantly work on improving all aspects of this biotechnological process. The aim of this research was to examine the kinetics of batch cultivation of Xanthomonas campestris ATCC 13951 using vegetable oil industry wastewaters as a basis for the cultivation medium, in order to produce the biopolymer xanthan. Kinetic modelling is very important for process control, reducing process costs and increasing product quality. By performing xanthan production on a medium with optimized content, the experimental values of content of biomass, carbon source and the desired product were obtained and used to determine the kinetics of biosynthesis. In order to describe biomass multiplication, product formation and carbon source consumption, the logistics, the Luedeking-Piret and modified Luedeking- -Piret equation, respectively, were successfully used. Additionally, using process simulation software (SuperPro Designer?), a process and cost model for a xanthan production facility was developed. The developed model represents the basis for a 21,294.29 and 23,107.97 kg/year xanthan production facility, which uses a vegetable oil industry wastewater-based medium and a semi-synthetic medium. The simulation model of the suggested xanthan production process, developed and based on defined kinetic models, represents an excellent basis for its further improvement and for increasing its efficiency.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3