Improving the performance of a heating system through energy management by using exergy parameters

Author:

Yucer Cem1,Hepbasli Arif2

Affiliation:

1. National Defense University, Air Force NCO Higher Vocational School, Gaziemir, Izmir, Turkey

2. Yasar University, Engineering Faculty, Department of Energy Systems Engineering, Bornova, Izmir, Turkey

Abstract

Energy management systems are used to analyze the efficiency of energy systems and identify any problem areas to lower costs and save energy, typically using energy based performance measurements. Our aim was to use exergy parameters, instead, to see if more accurate information could be obtained about which ener?gy saving application would result in greater energy savings. Exergy analysis is based on the Second law of thermodynamics and focuses on the environment and the quality of the energy. Implementing an exergetic approach to analyze a steam heating system, we examined data related to exergy flows and exergy losses, and ultimately improved the performance of the system through this energy management model. The following seven energy saving applications were identified and ranked according to their improvement potentials: adjusting the air to fuel ratio ? 1, preventing steam leaks ? 2, installing an automatic blow down system ? 3, insulating the pipes ? 4, insulating valves and flanges ?5, insulating fuel tank ?6, and recovering heat loss from the waste condensate ?7. The optimum ranking obtained through the exergy analysis was 3-1-2-5-7-6-4. A reduction of 15.918 kW in exergy consumption was achieved by installing an automatic blowdown system. This meant a total reduction of 1779.03 kg per year in total fuel consumption, $1458.81 per year of cost reduction and the total cost reduction achieved was $1829.25 per year. Making improvements to the seven selected areas in the system, 38.4% of the energy loss was recovered while the recovery in the exergy consumption was 44.5%.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3